Step 2: Choosing the Framework
Framework Options
LlamaIndex:
Pros: Optimized for large-scale indexing and retrieval tasks.
Cons: May require more setup for complex workflows.
LangChain:
Pros: Flexible and modular approach for chaining multiple LLMs and tools.
Cons: Requires a good understanding of LLM interactions.
CrewAI:
Pros: High-level abstractions and extensive tool integrations.
Cons: May have limitations in customizability.
Considerations
Project Requirements: Evaluate the specific needs of your project (e.g., data volume, processing speed, integration complexity).
Community Support: Consider the community and developer support available for each framework.
Scalability: Assess the scalability options provided by the framework for future growth.
Select a minimalist approach
Use OpenAI's API directly
Implement custom ChatBot class
Set up API connection
Install openai library:
pip install openai
Configure API key:
import openai openai.api_key = 'your-api-key-here'
Create ChatBot class:
Initialize with system prompt
Implement call method for interactions
Use openai.ChatCompletion.create() for requests
class ChatBot:
def __init__(self, api_key, system_prompt):
self.api_key = api_key
openai.api_key = self.api_key
self.system_prompt = system_prompt
self.messages = [{"role": "system", "content": system_prompt}]
def call(self, user_input):
self.messages.append({"role": "user", "content": user_input})
response = openai.ChatCompletion.create(
model="gpt-3.5-turbo",
messages=self.messages
)
ai_response = response.choices[0].message['content']
self.messages.append({"role": "assistant", "content": ai_response})
return ai_response
Resources
Last updated