Capx AI Builder Program
  • 🖖Introduction
    • 💻Capx AI Agent Builder (CAAB)
    • 👨‍💻Capx AI Infrastructure
  • CAPX AI BUILDER PROGRAM
    • 👷‍♂️Overview
    • 🌍Capx AI Agent Hackfest
    • ⭐Capx AI Bounties
    • ✨Capx AI Ecosystem Grant
  • GETTING STARTED
    • 👊How to Apply
    • 📗Resources
      • ▶️FAQs
      • ▶️Learning Material
      • ▶️Tutorials
      • ▶️Support
  • Build AI Agent Guide
    • 🛠️Step 1: Defining the Agent's Functionality
    • 🛠️Step 2: Choosing the Framework
    • 🛠️Step 3: Selecting the LLM Model
    • 🛠️Step 4: Integrating External APIs and Tools
    • 🛠️Step 5: Setting Up the Development Environment
    • 🛠️Step 6: Deploying your AI Agent
  • AI Agent Examples
    • 1️⃣SynopsisAI - Reading Assistant
    • 2️⃣GluuuAI - Dating Assitant
Powered by GitBook
On this page
  • Understanding the Agent's Purpose
  • Determine core capabilities
  • Design action format
  • Implement action functions
  • Resources
  1. Build AI Agent Guide

Step 1: Defining the Agent's Functionality

Understanding the Agent's Purpose

  1. Identify the Use Case:

    • Clearly define the problem the agent will solve or the task it will perform.

    • Examples include customer support, content generation, data analysis, etc.

  2. Specify Goals and Tasks:

    • Break down the primary goal into smaller, actionable tasks.

    • Define clear objectives and expected outcomes for each task.

  3. Determine Inputs and Outputs:

    • Identify the inputs the agent will need to perform its tasks

    • Define the expected outputs or responses from the agent.

Determine core capabilities

  • Information retrieval (e.g. Wikipedia search)

  • Data analysis (e.g. calculations)

  • Domain-specific tasks (e.g. blog search)

Design action format

Action: <action_name>: <action_input>

Implement action functions

import requests

def wikipedia(query):
    url = f"https://en.wikipedia.org/w/api.php?action=opensearch&search={query}&limit=1&format=json"
    response = requests.get(url)
    data = response.json()
    if data[1]:
        return f"Wikipedia result for '{query}': {data[3][0]}"
    else:
        return f"No Wikipedia results found for '{query}'."

def calculate(expression):
    try:
        result = eval(expression)
        return f"Result of '{expression}': {result}"
    except:
        return f"Error evaluating '{expression}'. Please check the input."

def simon_blog_search(query):
    # Placeholder function - replace with actual blog search implementation
    return f"Searching Simon's blog for '{query}'... (Placeholder result)"

Resources

PreviousSupportNextStep 2: Choosing the Framework

Last updated 10 months ago

🛠️
Understanding AI Agents
OpenAI API Documentation
Awesome AI Agents
CrewAI Documentation